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- Quotient Filter (QF). - Maintains a p-bit fingerprint, f, for each T T T EEE BQF
- Buffered Quotient Filter (BQF). eleme(?t In an open hash table with — i — o| 3| @ - Maintains one QF in RAM as a buffer and
. Cascade Filter (CF) m = 27 buckets using a teChnlque called e Fl 4] ualEEEEEE A one |arger QF on SSD.
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mqst S|gn|f|c_:ant DItS, fg- e In the external memory model [1], the num- ¢ = log, (N/M) QFs of exponentially
- Jris Sttloref n b;’thit f ¢ Advant ber of I/0s performed by BQF and CF is increasing size on SSD.
- Lompactly stores the hash table in an array Advantages - Has a false positive probability of at most
Backg round and Related Work of (r + 3)-bit items using linear probing as < Supports correct deletes. INSEft{_Tgx) MAY‘COTTdAIN(m) twice that of its largest QF 4
_ _ in [5]. We use three meta-data bits per slot < Supports in-order iteration. This enables: BQF|O (minej{mlo | ?\GI/M B})|0 (1) T - Has a customizable branching factor, b,

Approximate Membershlp Query (AMQ) data structure to enable decoding. o Dy_ngmmally resizing without rehashing. CF 0 (log, (N/M) /B) |0 (log, (N/M)) that provides a tradeoff between insert and
- Is used to avoid - Has a false positive probability of 27" - Efficient merging of two or more QFs. b L lookup performance.
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P P y False posiiive * QF substantially outperforms BF until about 80% full.  CF and BQF insert over 23 billion records in less than 30,000 seconds.
e o —  BF throughput is independent of its occupancy, but degrades as the false | « BQF and CF insert at least 4 times faster than all other data structures. By that time, all other data structures complete less than 10% of the
 Lookups Ase S LA ,i positive rate goes down. « The staircase pattern of the CF is due to merges. experiment.

Cache“‘/f{‘:\;\x,/"" """"""" B e QF throughput is unaffected by the false positive rate, but gets slower as it | ¢« The stalls in the BQF are due to flushing of the buffer. « As the RAM-to-SSD ratio increases CF outperforms BQF.
R \ becomes full.  CF and BQF perform 1,940 and 3,600 uniform random lookups per second
BF|O|1|1]0|0]|0|1 0/1 0|0|1]|0|0|0]1 respectively. We cannot compare against EBF, BBF and FBF because they
A , Uniform random lookups Uniform random lookups were not able to complete the large experiment
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- BF size is set upfront and is directly proportional to the S 2er06 | ] % BQF and CF

maximum number of elements expected. 5 Lse6 N ' 2 s Offer much faster inserts than recently proposed
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- If the BF outgrows RAM, its performance decays o ler06 A I external-memorv AMQ data structureg gn dp

because of poor data locality. z | | | e ek comparable Ioolzlu .
Previous attempts to improve BF scalability 0 20 40 60 80 100 "o 20 40 60 80 100 Are Z articular opod fit for decounled workloads and
» Storing BF on SSD [4, 6, 8]. - Elevator Bloom Filter (EBF) Percent full percentfull > A pat el S P
. Bufferina 4. 6. 8 - - « BQF is at least twice as fast as all other data structures. write-optimized databases.

uffering [4, 6, 8]. included as a baseline. | | . .
- Hash localization [4, 6] . Buffered Bloom Filter (BBF) « QF matches BF performance until about 65% occupancy. « CF performance depends on the number of levels at a particular stage of « The choice of CF versus BQF depends on the ratio of
. Multi-layered design, [ 8j 4] » QF performance degrades as its occupancy increases and clusters occupancy. | inserts to lookups in a particular workload.
- - - get larger. | o . C_F performance is comparable to EBF and BBF, and almost 50% - QF offers similar performance to BF but with better data
« Forest-structured Bloom  BF performance degrades as the density of 1-bits increases. higher than FBF. ocality and additional functionalit
Filter (FBF) [8]. y Y-
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