
Experimental Results

Don’t Thrash: How to Cache Your Hash on Flash
M.A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B.C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R.P. Spillane, E. Zadok

Summary Buffered Quotient Filter (BQF) / Cascade Filter (CF)Quotient Filter (QF)

Background and Related Work

Conclusions

Acknowledgements: This research was supported in part by DOE Grant DE-FG02-08ER25853,
NSF Grants CCF-0540897, CNS-0627645, CCF-0634793, CCF-0937829, CCF-0937833,
CCF-0937854, CCF-0937860, and CCF-0937822, and Politécnico Grancolombiano.

5.	J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computing, 33(9):828–834, 1984.
6.	B. Debnath, S. Sengupta, J. Li, D. Lilja, and D. Du. Bloomflash: Bloom filter on flash-based storage. In ICDCS, pages 635–644, 2011.
7.	D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison Wesley, 1973.
8.	G. Lu, B. Debnath, and D. H. C. Du. A forest-structured bloom filter with flash memory. In MSST, pages 1–6, 2011.

In-RAM On-SSD with RAM-to-SSD ratio of 1:4 On-SSD with RAM-to-SSD ratio of 1:24

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 0.2 0.4 0.6 0.8 1

A
v

er
ag

e
C

u
m

u
la

ti
v

e
T

h
ro

u
g

h
p

u
t

Percent full

BF-FP-12
QF-FP-12

BF-FP-9
QF-FP-9
BF-FP-6
QF-FP-6

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 20 40 60 80 100

A
v

er
ag

e
In

st
an

ta
n

eo
u

s
T

h
ro

u
g

h
p

u
t

Percent full

BF-FP-12
QF-FP-12

BF-FP-9
QF-FP-9
BF-FP-6
QF-FP-6

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f

in
se

rt
io

n
s

Time (seconds)

CF
BQF
EBF
BBF
FBF

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100

A
v

er
ag

e
T

h
ro

u
g

h
p

u
t

Percent full

CF: 2.96mil FBF: 1.17mil CF
BQF
EBF
BBF
FBF

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 0 5000 10000 15000 20000 25000 30000

N
u
m

b
e
r

o
f

in
se

rt
io

n
s

Time (seconds)

CF
BQF
EBF
BBF
FBF

References
1.	A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun. ACM, 31:1116–1127, 1988.
2.	M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J. Nelson. Cache-oblivious streaming B-trees. In

SPAA, pages 81–92, 2007.
3.	B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):422–426, 1970.
4.	M. Canim, G. A. Mihaila, B. Bhattacharhee, C. A. Lang, and K. A. Ross. Buffered Bloom filters on solid state storage. In VLDB ADMS

Workshop, 2010.

  


  



  




  




  




  




  




  




  




  


         











 







































f fq fr

We give three Approximate Membership Query (AMQ)
data structures:
•	Quotient Filter (QF).
•	Buffered Quotient Filter (BQF).
•	Cascade Filter (CF).
QF is an in-RAM alternative to the Bloom Filter (BF).
BQF and CF are external-memory AMQ data structures
built upon QF.

Approximate Membership Query (AMQ) data structure
•	Is used to avoid

unnecessary and
expensive disk
lookups for
non-existent
elements.

•	Is a space-efficient
representation of a
set supporting:
•	 .
•	 .

•	Can falsely report
that an element is in
the set when it is not
(false positive).

Bloom Filter (BF) [3]
•	Is one of the most widely used AMQ data structures.
•	Sets/checks random bits on an insert/lookup.
•	Has a false positive probability of .

An external-memory AMQ data structure is needed
because
•	BF size is set upfront and is directly proportional to the

maximum number of elements expected.
•	If the BF outgrows RAM, its performance decays

because of poor data locality.
Previous attempts to improve BF scalability
•	Storing BF on SSD [4, 6, 8].
•	Buffering [4, 6, 8].
•	Hash localization [4, 6].
•	Multi-layered design [8].

•	Elevator Bloom Filter (EBF)
included as a baseline.

•	Buffered Bloom Filter (BBF)
[4].

•	Forest-structured Bloom
Filter (FBF) [8].

AMQ

StoreCache

False
positive

A

B

May-Contain(C)

May-Contain(A)

Lookup(D)

Lookup(A)

May-Contain(D)

false

true

true

true

true

false

false

0 1 1 0 0 0 1 0 1 0 0 1 0 0 10

A B

CA D

Cache

Store

Lookups

False positive

BF

BQF and CF are external-memory AMQ data
structures.
BQF
•	Maintains one QF in RAM as a buffer and

one larger QF on SSD.
CF
•	Is based on COLA [2].
•	Maintains an in-memory QF and

 QFs of exponentially
increasing size on SSD.

•	Has a false positive probability of at most
twice that of its largest QF.

•	Has a customizable branching factor, ,
that provides a tradeoff between insert and
lookup performance.









     

           

     













                       

QF
•	Is a cache-friendly AMQ data structure.
•	Maintains a -bit fingerprint, , for each

element in an open hash table with
 buckets using a technique called

quotienting [7, Sec. 6.4 ex. 13]:
•	The fingerprint is partitioned into its

least significant bits, , and its
most significant bits, .

•	 is stored in bucket .
•	Compactly stores the hash table in an array

of -bit items using linear probing as
in [5]. We use three meta-data bits per slot
to enable decoding.

•	Has a false positive probability of .

•	QF substantially outperforms BF until about 80% full.
•	BF throughput is independent of its occupancy, but degrades as the false

positive rate goes down.
•	QF throughput is unaffected by the false positive rate, but gets slower as it

becomes full.

•	QF matches BF performance until about 65% occupancy.
•	QF performance degrades as its occupancy increases and clusters

get larger.
•	BF performance degrades as the density of 1-bits increases.

•	BQF and CF insert at least 4 times faster than all other data structures.
•	The staircase pattern of the CF is due to merges.
•	The stalls in the BQF are due to flushing of the buffer.

•	BQF is at least twice as fast as all other data structures.
•	CF performance depends on the number of levels at a particular stage of

occupancy.
•	CF performance is comparable to EBF and BBF, and almost 50%

higher than FBF.

•	CF and BQF insert over 23 billion records in less than 30,000 seconds.
By that time, all other data structures complete less than 10% of the
experiment.

•	As the RAM-to-SSD ratio increases CF outperforms BQF.
•	CF and BQF perform 1,940 and 3,600 uniform random lookups per second

respectively. We cannot compare against EBF, BBF and FBF because they
were not able to complete the large experiment.

•	BQF and CF
•	Offer much faster inserts than recently proposed

external-memory AMQ data structures and
comparable lookups.

•	Are a particular good fit for decoupled workloads and
write-optimized databases.

•	The choice of CF versus BQF depends on the ratio of
inserts to lookups in a particular workload.

•	QF offers similar performance to BF but with better data
locality and additional functionality.

Uniform random lookups

Uniform random inserts Uniform random inserts Uniform random inserts

Uniform random lookups

Advantages
•	Supports correct deletes.
•	Supports in-order iteration. This enables:
•	Dynamically resizing without rehashing.
•	Efficient merging of two or more QFs.

Asymptotics
In the external memory model [1], the num-
ber of I/Os performed by BQF and CF is

amortized expected
BQF
CF *

*Can be deamortized.

