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We give three Approximate Membership Query (AMQ) 
data structures:
• Quotient Filter (QF).
• Buffered Quotient Filter (BQF).
• Cascade Filter (CF).
QF is an in-RAM alternative to the Bloom Filter (BF).
BQF and CF are external-memory AMQ data structures 
built upon QF.

Approximate Membership Query (AMQ) data structure
• Is used to avoid 

unnecessary and 
expensive disk 
lookups for 
non-existent 
elements.

• Is a space-efficient 
representation of a 
set supporting:
• .
• .

• Can falsely report 
that an element is in 
the set when it is not 
(false positive).

Bloom Filter (BF) [3]
• Is one of the most widely used AMQ data structures.
• Sets/checks  random bits on an insert/lookup.
• Has a false positive probability of .

An external-memory AMQ data structure is needed 
because
• BF size is set upfront and is directly proportional to the 

maximum number of elements expected.
• If the BF outgrows RAM, its performance decays 

because of poor data locality.
Previous attempts to improve BF scalability
• Storing BF on SSD [4, 6, 8].
• Buffering [4, 6, 8].
• Hash localization [4, 6].
• Multi-layered design [8].

• Elevator Bloom Filter (EBF) 
included as a baseline.

• Buffered Bloom Filter (BBF) 
[4].

• Forest-structured Bloom 
Filter (FBF) [8].

AMQ

StoreCache

False
positive

A

B

May-Contain(C)

May-Contain(A)

Lookup(D)

Lookup(A)

May-Contain(D)

false

true

true

true

true

false

false

0 1 1 0 0 0 1 0 1 0 0 1 0 0 10

A B

CA D

Cache

Store

Lookups

False positive

BF

BQF and CF are external-memory AMQ data 
structures.
BQF
• Maintains one QF in RAM as a buffer and 

one larger QF on SSD.
CF
• Is based on COLA [2].
• Maintains an in-memory QF and 

 QFs of exponentially 
increasing size on SSD.

• Has a false positive probability of at most 
twice that of its largest QF.

• Has a customizable branching factor, , 
that provides a tradeoff between insert and 
lookup performance.









     

           

     













                       

QF
• Is a cache-friendly AMQ data structure.
• Maintains a -bit fingerprint, , for each 

element in an open hash table with 
 buckets using a technique called 

quotienting [7, Sec. 6.4 ex. 13]:
• The fingerprint is partitioned into its  

least significant bits, , and its  
most significant bits, .

•  is stored in bucket .
• Compactly stores the hash table in an array 

of -bit items using linear probing as 
in [5]. We use three meta-data bits per slot 
to enable decoding.

• Has a false positive probability of .

• QF substantially outperforms BF until about 80% full.
• BF throughput is independent of its occupancy, but degrades as the false 

positive rate goes down.
• QF throughput is unaffected by the false positive rate, but gets slower as it 

becomes full.

• QF matches BF performance until about 65% occupancy.
• QF performance degrades as its occupancy increases and clusters 

get larger.
• BF performance degrades as the density of 1-bits increases.

• BQF and CF insert at least 4 times faster than all other data structures.
• The staircase pattern of the CF is due to merges.
• The stalls in the BQF are due to flushing of the buffer.

• BQF is at least twice as fast as all other data structures.
• CF performance depends on the number of levels at a particular stage of 

occupancy.
• CF performance is comparable to EBF and BBF, and almost 50% 

higher than FBF.

• CF and BQF insert over 23 billion records in less than 30,000 seconds. 
By that time, all other data structures complete less than 10% of the 
experiment.

• As the RAM-to-SSD ratio increases CF outperforms BQF.
• CF and BQF perform 1,940 and 3,600 uniform random lookups per second 

respectively. We cannot compare against EBF, BBF and FBF because they 
were not able to complete the large experiment.

• BQF and CF
• Offer much faster inserts than recently proposed 

external-memory AMQ data structures and 
comparable lookups.

• Are a particular good fit for decoupled workloads and 
write-optimized databases.

• The choice of CF versus BQF depends on the ratio of 
inserts to lookups in a particular workload.

• QF offers similar performance to BF but with better data 
locality and additional functionality.

Uniform random lookups

Uniform random inserts Uniform random inserts Uniform random inserts

Uniform random lookups

Advantages
• Supports correct deletes.
• Supports in-order iteration. This enables:
• Dynamically resizing without rehashing.
• Efficient merging of two or more QFs.

Asymptotics
In the external memory model [1], the num-
ber of I/Os performed by BQF and CF is

amortized expected
BQF
CF *

*Can be deamortized.


