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We give three Approximate Membership Query (AMQ) 
data structures:
•	Quotient Filter (QF).
•	Buffered Quotient Filter (BQF).
•	Cascade Filter (CF).
QF is an in-RAM alternative to the Bloom Filter (BF).
BQF and CF are external-memory AMQ data structures 
built upon QF.

Approximate Membership Query (AMQ) data structure
•	Is used to avoid 

unnecessary and 
expensive disk 
lookups for 
non-existent 
elements.

•	Is a space-efficient 
representation of a 
set supporting:
•	 .
•	 .

•	Can falsely report 
that an element is in 
the set when it is not 
(false positive).

Bloom Filter (BF) [3]
•	Is one of the most widely used AMQ data structures.
•	Sets/checks  random bits on an insert/lookup.
•	Has a false positive probability of .

An external-memory AMQ data structure is needed 
because
•	BF size is set upfront and is directly proportional to the 

maximum number of elements expected.
•	If the BF outgrows RAM, its performance decays 

because of poor data locality.
Previous attempts to improve BF scalability
•	Storing BF on SSD [4, 6, 8].
•	Buffering [4, 6, 8].
•	Hash localization [4, 6].
•	Multi-layered design [8].

•	Elevator Bloom Filter (EBF) 
included as a baseline.

•	Buffered Bloom Filter (BBF) 
[4].

•	Forest-structured Bloom 
Filter (FBF) [8].

AMQ

StoreCache

False
positive

A

B

May-Contain(C)

May-Contain(A)

Lookup(D)

Lookup(A)

May-Contain(D)

false

true

true

true

true

false

false

0 1 1 0 0 0 1 0 1 0 0 1 0 0 10

A B

CA D

Cache

Store

Lookups

False positive

BF

BQF and CF are external-memory AMQ data 
structures.
BQF
•	Maintains one QF in RAM as a buffer and 

one larger QF on SSD.
CF
•	Is based on COLA [2].
•	Maintains an in-memory QF and 

 QFs of exponentially 
increasing size on SSD.

•	Has a false positive probability of at most 
twice that of its largest QF.

•	Has a customizable branching factor, , 
that provides a tradeoff between insert and 
lookup performance.
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QF
•	Is a cache-friendly AMQ data structure.
•	Maintains a -bit fingerprint, , for each 

element in an open hash table with 
 buckets using a technique called 

quotienting [7, Sec. 6.4 ex. 13]:
•	The fingerprint is partitioned into its  

least significant bits, , and its  
most significant bits, .

•	  is stored in bucket .
•	Compactly stores the hash table in an array 

of -bit items using linear probing as 
in [5]. We use three meta-data bits per slot 
to enable decoding.

•	Has a false positive probability of .

•	QF substantially outperforms BF until about 80% full.
•	BF throughput is independent of its occupancy, but degrades as the false 

positive rate goes down.
•	QF throughput is unaffected by the false positive rate, but gets slower as it 

becomes full.

•	QF matches BF performance until about 65% occupancy.
•	QF performance degrades as its occupancy increases and clusters 

get larger.
•	BF performance degrades as the density of 1-bits increases.

•	BQF and CF insert at least 4 times faster than all other data structures.
•	The staircase pattern of the CF is due to merges.
•	The stalls in the BQF are due to flushing of the buffer.

•	BQF is at least twice as fast as all other data structures.
•	CF performance depends on the number of levels at a particular stage of 

occupancy.
•	CF performance is comparable to EBF and BBF, and almost 50% 

higher than FBF.

•	CF and BQF insert over 23 billion records in less than 30,000 seconds. 
By that time, all other data structures complete less than 10% of the 
experiment.

•	As the RAM-to-SSD ratio increases CF outperforms BQF.
•	CF and BQF perform 1,940 and 3,600 uniform random lookups per second 

respectively. We cannot compare against EBF, BBF and FBF because they 
were not able to complete the large experiment.

•	BQF and CF
•	Offer much faster inserts than recently proposed 

external-memory AMQ data structures and 
comparable lookups.

•	Are a particular good fit for decoupled workloads and 
write-optimized databases.

•	The choice of CF versus BQF depends on the ratio of 
inserts to lookups in a particular workload.

•	QF offers similar performance to BF but with better data 
locality and additional functionality.

Uniform random lookups

Uniform random inserts Uniform random inserts Uniform random inserts

Uniform random lookups

Advantages
•	Supports correct deletes.
•	Supports in-order iteration. This enables:
•	Dynamically resizing without rehashing.
•	Efficient merging of two or more QFs.

Asymptotics
In the external memory model [1], the num-
ber of I/Os performed by BQF and CF is

amortized expected
BQF
CF *

*Can be deamortized.


