Don’t Thrash: How to Cache Your Hash on Flash

M.A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B.C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R.P. Spillane, E. Zadok

Summary Quotient Filter (QF) Buffered Quotient Filter (BQF) / Cascade Filter (CF)

We give three Approximate Membership Query (AMQ) QF | %J' FZ\ZH BQF and CF are external-memory AMQ data
data structures: - Is a cache-friendly AMQ data structure. ¢ Lt i aRAN: 2 (ALCD[F[H 3L W0 [P[VIX structures.
- Quotient Filter (QF). - Maintains a p-bit fingerprint, f, for each T T T EEE BQF
- Buffered Quotient Filter (BQF). eleme(?t In an open hash table with — i — o| 3| @ - Maintains one QF in RAM as a buffer and
. Cascade Filter (CF) m = 27 buckets using a teChnlque called e Fl 4] ualEEEEEE A one |arger QF on SSD.

- - - - uotienting [7, Sec. 6.4 ex. 13]: s continuats A e e — e
QF is an in-RAM alternative to the Bloom Filter (BF). q ngis, -ec.o.4ex. o). is_contjmation ool 2 CF
BQF and CF are external-memory AMQ data structures - The fingerprint is partitioned into its 7 isoccupied‘ { I e - 3 [ATE[CID]E FIG A T3 K LWIN 0[P Q[R]S T U]VIW]X . Is based on COLA [2].
built upon QF least S|_gn|_f|.cant b|_ts, fr,anditsg=p—r \__>%|0|011|®|02®|1|131|0|041|1|15@|1|161|@|17@|@|18@|1|19@|@|@ Asymptotics - Maintains an in-memory QF and

mqst S|gn|f|c_:ant DItS, fg- e In the external memory model [1], the num- ¢ = log, (N/M) QFs of exponentially
- Jris Sttloref n b;’thit f ¢ Advant ber of I/0s performed by BQF and CF is increasing size on SSD.
- Lompactly stores the hash table in an array Advantages - Has a false positive probability of at most
Backg round and Related Work of (r + 3)-bit items using linear probing as < Supports correct deletes. INSEft{_Tgx) MAY‘COTTdAIN(m) twice that of its largest QF 4
_ _ in [5]. We use three meta-data bits per slot < Supports in-order iteration. This enables: BQF|O (minej{mlo | ?\GI/M B})|0 (1) T - Has a customizable branching factor, b,

Approximate Membershlp Query (AMQ) data structure to enable decoding. o Dy_ngmmally resizing without rehashing. CF 0 (log, (N/M) /B) |0 (log, (N/M)) that provides a tradeoff between insert and
- Is used to avoid - Has a false positive probability of 27" - Efficient merging of two or more QFs. b L lookup performance.

unnecessary and

. . AMQ
expenSIVe dISk MAY-CONTAIN(C)
lookups for NS I i
o - Experimental Results
e I e m e ntS MAY-CONTAIN(A) /\ . . . .
s a space-sfficient T oo [ In-RAM On-SSD with RAM-to-SSD ratio of 1:4 On-SSD with RAM-to-SSD ratio of 1:24
representation of a _ TRUE o Uniform random inserts Uniform random inserts
. - 4e+06 T T T T 4e+09 T 2.5e+10 T T | T T T
Set SU ppOrtlng (— MAY-CONTAIN(D) A é T gg:gg:i% - 3 56+09 if
= 3.5e+06 RS LES LT e 7
¢ INSERT(x ) False < LooKUP(D) %D ’ | 2 Z 2e+10
 MAY-CONTAIN (z).7" e g g _ :
. . - - % § 2.5e+09 i § 1.5e+10
- Can falsely report . Z 250406 2 Z
.. S o~ 2e+09 . S
that an element is in —’ T 2006 s :
Cache Store & P) 156409 i ) le+10
iy n = e D€ O
the set when it is not O | 5es06 = £
_— 9 . c B il
(false pOSItIVG) . %0 Let06 , Z le+09 . \ Z 5e+09
. e+ e B N1 111 e o _
. 500000 | | | | # le:f:;%ﬁuMWWW | | | | | | | | |
- Is one of the most widely used AMQ data structures. 0 0.2 0.4 0.6 0.8 1 ’ 0 500 1000 1500 2000 2500 3000 3500 ° 0 5000 10000 15000 20000 25000 30000
- Sets/checks k£ random bits on an insert/lookup. Percent full Time (seconds) Time (seconds)
. Has a false positive probability of 27", . . .

P P y False posiiive * QF substantially outperforms BF until about 80% full.  CF and BQF insert over 23 billion records in less than 30,000 seconds.
e o —  BF throughput is independent of its occupancy, but degrades as the false | « BQF and CF insert at least 4 times faster than all other data structures. By that time, all other data structures complete less than 10% of the
 Lookups Ase S LA ,i positive rate goes down. « The staircase pattern of the CF is due to merges. experiment.

Cache“‘/f{‘:\;\x,/"" """"""" B e QF throughput is unaffected by the false positive rate, but gets slower as it | ¢« The stalls in the BQF are due to flushing of the buffer. « As the RAM-to-SSD ratio increases CF outperforms BQF.
R \ becomes full.  CF and BQF perform 1,940 and 3,600 uniform random lookups per second
BF|O|1|1]0|0]|0|1 0/1 0|0|1]|0|0|0]1 respectively. We cannot compare against EBF, BBF and FBF because they
A , Uniform random lookups Uniform random lookups were not able to complete the large experiment
Store N 4 2 E} Se+06 | | ' A —— 20000 —CF 7 96mil FBF: 1.17mil | = —
A <, 4.5e+06 - QF-FP-12 ---»--- 7 BQF -
2 | ot BrbY n i
. 5 _ e P9 o T 3B | :

An external-memory AMQ data structure is needed SUEEE e I R s ey 5 Conclusions
beca = 3e+06 | Mg k 2

ec U.SQ _ _ _ _ ;% 2.5e+06 - ’ﬁ . E 10000 |- .
- BF size is set upfront and is directly proportional to the S 2er06 | ] % BQF and CF

maximum number of elements expected. 5 Lse6 N ' 2 s Offer much faster inserts than recently proposed

I ht < B °

- If the BF outgrows RAM, its performance decays o ler06 A I external-memorv AMQ data structureg gn dp

because of poor data locality. z | | | e ek comparable Ioolzlu .
Previous attempts to improve BF scalability 0 20 40 60 80 100 "o 20 40 60 80 100 Are Z articular opod fit for decounled workloads and
» Storing BF on SSD [4, 6, 8]. - Elevator Bloom Filter (EBF) Percent full percentfull > A pat el S P
. Bufferina 4. 6. 8 - - « BQF is at least twice as fast as all other data structures. write-optimized databases.

uffering [4, 6, 8]. included as a baseline. | | . .
- Hash localization [4, 6] . Buffered Bloom Filter (BBF) « QF matches BF performance until about 65% occupancy. « CF performance depends on the number of levels at a particular stage of « The choice of CF versus BQF depends on the ratio of
. Multi-layered design, [ 8j 4] » QF performance degrades as its occupancy increases and clusters occupancy. | inserts to lookups in a particular workload.
- - - get larger. | o . C_F performance is comparable to EBF and BBF, and almost 50% - QF offers similar performance to BF but with better data
« Forest-structured Bloom  BF performance degrades as the density of 1-bits increases. higher than FBF. ocality and additional functionalit
Filter (FBF) [8]. y Y-
\ References
N mm  Massachusetts 1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun. ACM, 31:1116-1127, 1988. 5.J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computing, 33(9):828—834, 1984.
q\\\ %1_30.11}7 Bﬁ?()k IQJTGERS IIIII }gfﬂ,t,‘:,t,i;; TOkuII.ek 2.M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J. Nelson. Cache-oblivious streaming B-trees. In 6.B. Debnath, S. Sengupta, J. Li, D. Lilja, and D. Du. Bloomflash: Bloom filter on flash-based storage. In ICDCS, pages 635—644, 2011.
NIVErsity SPAA, pages 81-92, 2007. 7.D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison Wesley, 1973.
_ _ 3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):422—-426, 1970. 8. G. Lu, B. Debnath, and D. H. C. Du. A forest-structured bloom filter with flash memory. In MSST, pages 1-6, 2011.
Acknowledgements: This research was supported in part by DOE Grant DE-FG02-08ER25853, 4.M. Canim, G. A. Mihaila, B. Bhattacharhee, C. A. Lang, and K. A. Ross. Buffered Bloom filters on solid state storage. In VLDB ADMS

NSF Grants CCF-0540897, CNS-0627645, CCF-0634793, CCF-0937829, CCF-0937833,

CCF-0937854, CCF-0937860, and CCF-0937822, and Politécnico Grancolombiano. Workshop, 2010.



